公司動態
河北首信環保設備生產廠家低溫等離子凈化器的使用與維護
閱讀:356 發布時間:2017-12-26低溫等離子體技術應用范圍廣,氣體的流速和濃度對于氣態污染物治理技術應用來說是兩個非常重要的因素。生物過濾和燃燒技術能應用于較高濃度范圍,但卻
受氣體的流速所限;電子束照射技術僅有一非常窄的氣體流速范圍。而低溫等離子體技術對氣體的流速和濃度都有一個很寬的應用范圍,其應用廣泛不言而喻。等離子體技術工藝簡單,
吸附法要考慮吸附劑的定期更換,脫附時還有可能造成二次污染;燃燒法需要很高的操作溫度;聯合催化法中,催化劑存在選擇性,某些條件(如溫度過高)會造成催化劑失活,光催化法
只能利用紫外光等;生物法要嚴格控制pH值、溫度和濕度等條件,以適合微生物的生長。而低溫等離子體技術則較好的克服了以上技術的不足,反應條件為常溫常壓,反應器結構簡單,
并可同時消除混合污染物(有些情況還具有協同作用),不會產生二次污染等。就經濟可行性來說,低溫等離子體反應裝置本身系統構成就單一緊湊,在運行費用方面,微觀來講,因放電
過程只提高電子溫度而離子溫度基本保持不變,這樣反應體系就得以保持低溫,所以不僅能量利用率高,而且使設備維護費用也很低。 低溫等離子體技術在氣態污染物治理方面優
勢顯著。其基本原理是在電場的加速作用下,產生高能電子,當電子平均能量超過目標治理物分子化學鍵能時,分子鍵斷裂,達到消除氣態污染物的目的。1980年代,日本東京大學S.
Masuda教授提出的高壓脈沖電暈放電法是常溫常壓下得到低溫等離子體的zui簡單、zui有效的方法。它已成為目前的研究前沿,也正越來越多的用于氣態污染物的治理。
等離子空氣凈化器又稱低溫等離子廢氣凈化器。
它是在電催化總的設計概念下,分三個即獨立又混成的激發系統:微波激發區、等離子激發區、極板激發區。每個激發區有它特定的功能,但在原理上有它相似的地方。
它有3至9個微波激發單位,根據被處理風量的不同,數量不同,微波由于它的頻率相對比較高,在納秒的時間內有效作用于被處理空間(區域),由于微波的功率相對較小,因此在激發
能力上也就是說電子的獲能躍遷能力上有限,它的設計只是把微波作為初頻激發源,在處理過程中作為一種預激發能。由于微波的預激功能,*的提高等離子體區,極板區的激發能力
和處理效果。由于微波技術的運用,它在同類設備的比較中顯得設備精煉而效果*。它有40支至240支充有特殊氣體的無極管組成的低溫等離子體激發區,低溫等離子體區是工藝的核
心技術,國外諸多科研機構室稱在常壓下實現低溫等離子體。
等離子空氣凈化器是集低溫等離子體、微波放電、極板放電與一體,在實際使用中實現廢氣的有效處理是極為復雜的過程,整個過程在不到1秒的時間內完成。從理論到模型都能探究到
相關的機理,通過三種方式的集中放電,廢氣分子從低能的E,在千分之一秒的時間內躍遷到足以使其電離的Em級,廢氣分子鍵充分斷裂,在雪崩式的撞擊中斷裂后的粒子由于質量更小,
被進一步躍遷,與反應堆內的氧離子氫氧根離子發生反應,生成無害無味的CO2、H2O以及其它高價化合物。同時由于反應堆內臭氧以及紫外線的作用,*去除不同范疇的廢氣化合物,
實地較為廣譜的去除空間。
低溫等離子體去除污染物的機理: 等離子體化學反應過程中,等離子體傳遞化學能量的反應過程中能量的傳遞大致如下: (1) 電場+電子→高能電子(2) 高能電子+分子(或原
子)→(受激原子、受激基團、游離基團) 活性基團 (3) 活性基團+分子(原子)→生成物+熱 (4) 活性基團+活性基團→生成物+熱 從以上過程可以看出,電子首先從電場獲得能量
,通過激發或電離將能量轉移到分子或原子中去,獲得能量的分子或原子被激發,同時有部分分子被電離,從而成為活性基團;之后這些活性基團與分子或原子、活性基團與活性基團之
間相互碰撞后生成穩定產物和熱。另外,高能電子也能被鹵素和氧氣等電子親和力較強的物質俘獲,成為負離子。這類負離子具有很好的化學活性,在化學反應中起著重要的作用。
低溫等離子體去除污染物的原理: 低溫等離子體技術處理污染物的原理為:在外加電場的作用下,介質放電產生的大量攜能電子轟擊污染物分子,使其電離、解離和激發,然
后便引發了一系列復雜的物理、化學反應,使復雜大分子污染物轉變為簡單小分子安全物質,或使有毒有害物質轉變成無毒無害或低毒低害的物質,從而使污染物得以降解去除。因其電
離后產生的電子平均能量在10ev ,適當控制反應條件可以實現一般情況下難以實現或速度很慢的化學反應變得十分快速。作為環境污染處理領域中的一項具有*潛在優勢的*
,等離子體受到了國內外相關學科界的高度關注。 低溫等離子體技術在環境工程中的應用: 低溫等離子體技術在廢氣處理中的應用隨著工業經濟的發展,石油、制藥、油
漆、印刷和涂料等行業產生的揮發性有機廢氣也日漸增多,這些廢氣不僅會在大氣中停留較長的時間,還會擴散和漂移到較遠的地方,給環境帶來嚴重的污染,這些廢氣吸入人體,直接
對人體的健康產生*的危害;另外工業煙氣的無控制排放使性的大氣環境日益惡化,酸雨(主要來源于工業排放的硫氧化物和氮氧化物) 的危害引起了各國的重視。由于大氣受污
染而酸化,導致了生態環境的破壞,重大災難頻繁發生,給人類造成了巨大損失。因此選擇一種經濟、可行性強的處理方法勢在必行。 降解揮發性有機污染物(VOCs)傳統的處理方
法如吸收、吸附、冷凝和燃燒等對于低濃度的VOCs很難實現,而光催化降解VOCs又存在催化劑容易失活的問題,利用低溫等離子體處理VOCs可以不受上述條件的限制,具有潛在的優勢。
但由于等離子體是一門包含放電物理學、放電化學、化學反應工程學及真空技術等基礎學科之上的交叉學科。因此, 目前能成熟的掌握該技術的單位非常的少。大部分宣傳采用低溫等離
子技術處理廢氣的宣傳都不是真正意義上的低溫等離子廢氣處理技術。 是否是低溫等離子體處理技術的簡單判斷方法: 如何判斷是否是真正意義上的低溫等離子體技術
?可以用下面兩個簡單的規則來判斷: (1) 在廢氣處理的通道上必須充滿了低溫等離子體。這條規則判斷很簡單,只要用眼睛觀察一下處理通道是否充滿紫藍色的放電就可以直觀的了
解是否是低溫等離子體了(需要注意的是不要將各種顏色的燈光當作低溫體放電)。如果在廢氣處理的通道上只零星的分布若干的放電點或線,則處理的效果是非常有限的,因為,大部
分的(VOCs)氣體沒有進過低溫等離子體處理區域。 (2) 低溫等離子體處理系統必須要有一定的放電處理功率。通常需要在2~5瓦時/米3 。即1000米3 /時的風量需要處理的電功率
為2KW~5KW。如果號稱1000米3 /時的風量只需要幾十或幾百瓦的電功率,則zui多也就是靜電(除塵)處理或局部處理而已。要想分解VOCs沒有一定的能量是不可能的。 低溫等離子體處
理設備的特點: