技術文章
濕度的名詞解釋和濕度傳感器選擇
閱讀:993 發布時間:2010-9-13濕度的名詞解釋
濕度
在計量法中規定,濕度定義為“物象狀態的量”。日常生活中所指的濕度為相對濕度,%rh表示。總言之,即氣體中(通常為空氣中)所含水蒸氣量(水蒸氣壓)與其空氣相同情況下飽和水蒸氣量(飽和水蒸氣壓)的百分比。
濕度測量的歷史
濕度和溫度很久以前就與生活存在著密切的關系,但用數量來進行表示較為困難。濕度計測的歷史可以追溯到中國的天秤型(公元前179年)為zui早的濕度計測。(溫度計測可追溯到記載的希臘時代的溫度計。)
濕度(Absolute humidity)
單位體積(1m3)的氣體中含有水蒸氣的質量(g)。
表示∶D=g/m3
但是,即使水蒸氣量相同,由于溫度和壓力的變化氣體體積也要發生變化,即濕度D發生變化。D為容積基準。
相對濕度(Relative humidity)
氣體中的水蒸氣壓(e)與其氣體的飽和水蒸氣壓(es)的比/用百分比表示。
表示∶rh=e/es×100%
但是,溫度和壓力的變化導致飽和水蒸氣壓的變化,rh也將隨之而變化。
飽和水蒸氣壓(Saturation Vapor Pressure)
氣體中所含水蒸氣的量是有限度的,達到限度的狀態即可稱之為飽和,此時的水蒸氣壓即稱為飽和水蒸氣壓。此物理量亦隨著溫度,壓力的變化而變化,并且,0℃以下即使同一濕度,與水共存的飽和水蒸氣壓(esw)和與冰共存的飽和水蒸氣壓(esi)的值不同,通常所采用的是與水共存的飽和水蒸氣壓(esw)。各溫度對應的飽和水蒸氣壓表JIS-Z-8806在卷末記載。
露點(Dew Point)
溫度較高的氣體其所含水蒸氣也較多,將此氣冷卻后,其所含水蒸氣的量即使不發生變化,相對濕度增加,當達到一定溫度時相對rh達到100%飽和,此時,繼續進行冷卻的話,其中一部分的水蒸氣將凝聚成露。此時的溫度即為露點溫度(Dew Point Temperature)。露點在0℃以下結冰時即為霜點(Frost Point)。
不快指數"THI "(temperature humidity index)
不快指數這一術語,流行于表示居住環境,始用于1959年美國*。表示為:THI=(乾球溫度td+濕球溫度tw)×0.72+40.6,此數據70~75為半數不快,80以上基本上為全員不快,zui近,市場上有不快指數計在得以銷售。
實效溫度(Effective Temperature)
不快指數是人體可感知的指數的簡易表示方式,隨著zui近空氣調和技術的發展,溫度,濕度以外,又導入了風速等人間可感知的項目,從而創造了這個術語。與不快指數的差異不大,其變化較為接近。
等價溫度(Equivalent-Warmth)
包含實效溫度的要素(溫度,濕度,氣流)以及輻射等4要素的術語。
混合比"X"(humidity mixing ratio)
對于1kg水蒸氣以下的空氣(干燥空氣),包含Xkg比例的水蒸氣,其質量的比例X(kg/kg)為混合比,即使溫度壓力和體積發生變化,只要水蒸氣的量不變,其混合比不變。因此,為了便于計算,在工業上將混合比稱為濕度來使用。X為重量標準。
比濕"S"(Specific humidity)
即濕氣(1kg)中所含的水蒸氣(kg)。kg/kg來表示。
比較濕度"φ"(percentage humidity)
即1kg干氣中所含水蒸氣量(濕氣的X)和同樣溫度的1kg干氣所含飽和水蒸氣量(飽和空氣的濕度Xs)的比值的100倍。
φ=X/Xs×100%或稱為飽和度(Saturation degree)即φ=0為干燥空氣,φ=100為飽和空氣。
摩爾比(molar humidity)"λ"
即水蒸氣壓和干氣的壓力比,即兩者的摩爾數的比。
飽差(saturation deficit)
即es-e或Ds-D。在論述水的蒸發,干燥時用。
標準溫濕度狀態(JIS-8703)
標準濕度狀態 1級 :相對濕度 65±2%rh
標準濕度狀態 2級 :相對濕度 65±5%rh
標準濕度狀態 3級 :相對濕度 65±20%rh
通常3級濕度狀態為常濕。
標準溫濕度狀態 1類 :溫度20±1℃ 相對濕度 65±2%rh
標準溫濕度狀態 2類 :溫度20±2℃ 相對濕度 65±2%rh
標準溫濕度狀態 3類 :溫度20±2℃ 相對濕度 65±5%rh
常溫常濕:溫度 20±15℃ 相對濕度 65±20%rh
濕(干)球溫度(Wet-bulb temperature)"tw"
與外部隔熱的系統內氣體與液體接觸,氣體傳導給液體一定的熱量,其受熱液體部分蒸發,氣體的溫度,濕度以及液溫均無變化時的液溫(tw℃)為其時的氣體狀態的濕球溫度。即其時的氣體溫度(t℃)為干球溫度(化學工學詞典)
斷熱飽和溫度(Adiabatic Saturation temperature)"ts"
空氣在斷熱的狀態下與水接觸,稱為與水溫相同的飽和空氣。此時的溫度為斷熱飽和溫度。
※濕球溫度計的濕球感熱部的表面的水分進行蒸發奪取潛熱,與周圍的空氣進行熱5m/sec以上時即可與斷熱飽和溫度相同。
水分活性(water activity)"Aw"
食品中所含的水分,與自由水區別開來,以結晶水的形態自由吸放。以前計算食品水分含水量的方式是將食品進行干燥比較其重量,zui近采用熱力學的方法使用自由水和自由度來表示水分活性的觀點是比較合理方法,其值為Aw。
顯熱"kcal/kg’"
隨著物體溫度的升降,干燥空氣1kg所出入的熱量/溫度相當于○0.24T顯熱,0.24即為干燥空氣的重量比熱(kcal/kg℃)。
潛熱"kcal/kg’"
物體的蒸發,凝聚相互變化時,即使出入的熱量/溫度的升降發生變化,其出入的熱量不變。溫度T的水蒸氣1kg的潛熱(597.3+0.44T)。597.3是蒸氣的氣化潛熱。 熱函
即物體的保有熱量的總量。
熱水分比"μ"
不飽和空氣從其他物體(例如其他空氣,水,水蒸氣等)上得到熱和水分時,其空氣的熱函變化量⊿i和濕度的變化量⊿X的比
μ=⊿i/⊿X
霧氣
飽和空氣中混有水滴的狀態。
含雪空氣
飽和空氣中混有雪和冰的狀態。
比重量"γ"
標準狀態(溫度0℃、壓力760mmHg、重力加速度g=980、665cm/S2)的比重量γ為1.293kg/Nm3。空氣中水分的重量約為1~2%。當然,隨著濕度壓力而變化,空調方面較多以濕氣的比1.2kg/m3來計算。
比容積
干燥空氣1kg所含濕氣的容積。濕比重量的逆數。由此,1/1.2=0.833m3/kg〔DA〕,在此,kg〔DA〕表示的是干燥空氣1kg。
比熱"Cp"
是指濕氣溫度變化1℃時熱量的變化。
Cp=0.240+0.44χ
此時的Cp:濕氣的定壓比熱〔kcal/kg(DA)?℃〕
χ :濕氣的濕度〔kg/kg(DA)〕
顯熱比(Sensible heat factor)"SHF"
空氣的溫度及濕度變化時,針對全熱量(熱函)變化的顯熱量比率,即:SHF=(Cp*⊿t)/⊿i
此時Cp:定壓比熱
⊿i:熱函變化量
⊿t:溫度變化量
實效濕度(Effective humidity)"E"
冬季連續干燥的時間較長,為防止火災的發生以及確認木材的干燥度所使用。
E=(1-0.7)H0+0.7H1+(0.7)(0.7)H2+??????
此時的H0:當日的相對濕度
H1:前日的相對濕度
H2:前前日的相對濕度力。
濕度
在計量法中規定,濕度定義為“物象狀態的量”。日常生活中所指的濕度為相對濕度,%rh表示。總言之,即氣體中(通常為空氣中)所含水蒸氣量(水蒸氣壓)與其空氣相同情況下飽和水蒸氣量(飽和水蒸氣壓)的百分比。
濕度測量的歷史
濕度和溫度很久以前就與生活存在著密切的關系,但用數量來進行表示較為困難。濕度計測的歷史可以追溯到中國的天秤型(公元前179年)為zui早的濕度計測。(溫度計測可追溯到記載的希臘時代的溫度計。)
濕度(Absolute humidity)
單位體積(1m3)的氣體中含有水蒸氣的質量(g)。
表示∶D=g/m3
但是,即使水蒸氣量相同,由于溫度和壓力的變化氣體體積也要發生變化,即濕度D發生變化。D為容積基準。
相對濕度(Relative humidity)
氣體中的水蒸氣壓(e)與其氣體的飽和水蒸氣壓(es)的比/用百分比表示。
表示∶rh=e/es×100%
但是,溫度和壓力的變化導致飽和水蒸氣壓的變化,rh也將隨之而變化。
飽和水蒸氣壓(Saturation Vapor Pressure)
氣體中所含水蒸氣的量是有限度的,達到限度的狀態即可稱之為飽和,此時的水蒸氣壓即稱為飽和水蒸氣壓。此物理量亦隨著溫度,壓力的變化而變化,并且,0℃以下即使同一濕度,與水共存的飽和水蒸氣壓(esw)和與冰共存的飽和水蒸氣壓(esi)的值不同,通常所采用的是與水共存的飽和水蒸氣壓(esw)。各溫度對應的飽和水蒸氣壓表JIS-Z-8806在卷末記載。
露點(Dew Point)
溫度較高的氣體其所含水蒸氣也較多,將此氣冷卻后,其所含水蒸氣的量即使不發生變化,相對濕度增加,當達到一定溫度時相對rh達到100%飽和,此時,繼續進行冷卻的話,其中一部分的水蒸氣將凝聚成露。此時的溫度即為露點溫度(Dew Point Temperature)。露點在0℃以下結冰時即為霜點(Frost Point)。
不快指數"THI "(temperature humidity index)
不快指數這一術語,流行于表示居住環境,始用于1959年美國*。表示為:THI=(乾球溫度td+濕球溫度tw)×0.72+40.6,此數據70~75為半數不快,80以上基本上為全員不快,zui近,市場上有不快指數計在得以銷售。
實效溫度(Effective Temperature)
不快指數是人體可感知的指數的簡易表示方式,隨著zui近空氣調和技術的發展,溫度,濕度以外,又導入了風速等人間可感知的項目,從而創造了這個術語。與不快指數的差異不大,其變化較為接近。
等價溫度(Equivalent-Warmth)
包含實效溫度的要素(溫度,濕度,氣流)以及輻射等4要素的術語。
混合比"X"(humidity mixing ratio)
對于1kg水蒸氣以下的空氣(干燥空氣),包含Xkg比例的水蒸氣,其質量的比例X(kg/kg)為混合比,即使溫度壓力和體積發生變化,只要水蒸氣的量不變,其混合比不變。因此,為了便于計算,在工業上將混合比稱為濕度來使用。X為重量標準。
比濕"S"(Specific humidity)
即濕氣(1kg)中所含的水蒸氣(kg)。kg/kg來表示。
比較濕度"φ"(percentage humidity)
即1kg干氣中所含水蒸氣量(濕氣的X)和同樣溫度的1kg干氣所含飽和水蒸氣量(飽和空氣的濕度Xs)的比值的100倍。
φ=X/Xs×100%或稱為飽和度(Saturation degree)即φ=0為干燥空氣,φ=100為飽和空氣。
摩爾比(molar humidity)"λ"
即水蒸氣壓和干氣的壓力比,即兩者的摩爾數的比。
飽差(saturation deficit)
即es-e或Ds-D。在論述水的蒸發,干燥時用。
標準溫濕度狀態(JIS-8703)
標準濕度狀態 1級 :相對濕度 65±2%rh
標準濕度狀態 2級 :相對濕度 65±5%rh
標準濕度狀態 3級 :相對濕度 65±20%rh
通常3級濕度狀態為常濕。
標準溫濕度狀態 1類 :溫度20±1℃ 相對濕度 65±2%rh
標準溫濕度狀態 2類 :溫度20±2℃ 相對濕度 65±2%rh
標準溫濕度狀態 3類 :溫度20±2℃ 相對濕度 65±5%rh
常溫常濕:溫度 20±15℃ 相對濕度 65±20%rh
濕(干)球溫度(Wet-bulb temperature)"tw"
與外部隔熱的系統內氣體與液體接觸,氣體傳導給液體一定的熱量,其受熱液體部分蒸發,氣體的溫度,濕度以及液溫均無變化時的液溫(tw℃)為其時的氣體狀態的濕球溫度。即其時的氣體溫度(t℃)為干球溫度(化學工學詞典)
斷熱飽和溫度(Adiabatic Saturation temperature)"ts"
空氣在斷熱的狀態下與水接觸,稱為與水溫相同的飽和空氣。此時的溫度為斷熱飽和溫度。
※濕球溫度計的濕球感熱部的表面的水分進行蒸發奪取潛熱,與周圍的空氣進行熱5m/sec以上時即可與斷熱飽和溫度相同。
水分活性(water activity)"Aw"
食品中所含的水分,與自由水區別開來,以結晶水的形態自由吸放。以前計算食品水分含水量的方式是將食品進行干燥比較其重量,zui近采用熱力學的方法使用自由水和自由度來表示水分活性的觀點是比較合理方法,其值為Aw。
顯熱"kcal/kg’"
隨著物體溫度的升降,干燥空氣1kg所出入的熱量/溫度相當于○0.24T顯熱,0.24即為干燥空氣的重量比熱(kcal/kg℃)。
潛熱"kcal/kg’"
物體的蒸發,凝聚相互變化時,即使出入的熱量/溫度的升降發生變化,其出入的熱量不變。溫度T的水蒸氣1kg的潛熱(597.3+0.44T)。597.3是蒸氣的氣化潛熱。 熱函
即物體的保有熱量的總量。
熱水分比"μ"
不飽和空氣從其他物體(例如其他空氣,水,水蒸氣等)上得到熱和水分時,其空氣的熱函變化量⊿i和濕度的變化量⊿X的比
μ=⊿i/⊿X
霧氣
飽和空氣中混有水滴的狀態。
含雪空氣
飽和空氣中混有雪和冰的狀態。
比重量"γ"
標準狀態(溫度0℃、壓力760mmHg、重力加速度g=980、665cm/S2)的比重量γ為1.293kg/Nm3。空氣中水分的重量約為1~2%。當然,隨著濕度壓力而變化,空調方面較多以濕氣的比1.2kg/m3來計算。
比容積
干燥空氣1kg所含濕氣的容積。濕比重量的逆數。由此,1/1.2=0.833m3/kg〔DA〕,在此,kg〔DA〕表示的是干燥空氣1kg。
比熱"Cp"
是指濕氣溫度變化1℃時熱量的變化。
Cp=0.240+0.44χ
此時的Cp:濕氣的定壓比熱〔kcal/kg(DA)?℃〕
χ :濕氣的濕度〔kg/kg(DA)〕
顯熱比(Sensible heat factor)"SHF"
空氣的溫度及濕度變化時,針對全熱量(熱函)變化的顯熱量比率,即:SHF=(Cp*⊿t)/⊿i
此時Cp:定壓比熱
⊿i:熱函變化量
⊿t:溫度變化量
實效濕度(Effective humidity)"E"
冬季連續干燥的時間較長,為防止火災的發生以及確認木材的干燥度所使用。
E=(1-0.7)H0+0.7H1+(0.7)(0.7)H2+??????
此時的H0:當日的相對濕度
H1:前日的相對濕度
H2:前前日的相對濕度力。
1.選擇測量范圍
和測量重量、溫度一樣,選擇濕度傳感器首先要確定測量范圍。除了氣象、科研部門外,搞溫、濕度測控的一般不需要全濕程(0-100%RH)測量。在當今的信息時代,傳感器技術與計算機技術、自動控制拄術緊密結合著。測量的目的在于控制,測量范圍與控制范圍合稱使用范圍。當然,對不需要搞測控系統的應用者來說,直接選擇通用型濕度儀就可以了。下面列舉一些應用領域對濕度傳感器使用溫度、濕度的不同要求,供使用者參考。用戶根據需要向傳感器生產廠提出測量范圍,生產廠優先保證用戶在使用范圍內傳感器的性能穩定一致,求得合理的性能價格比,對雙方來講是一件相得益彰的事情。
2、選擇測量精度
和測量范圍一樣,測量精度同是傳感器zui重要的指標。每提高—個百分點.對傳感器來說就是上一個臺階,甚至是上一個檔次。因為要達到不同的精度,其制造成本相差很大,售價也相差甚遠。例如進口的1只廉價的濕度傳感器只有幾美元,而1只供標定用的全濕程濕度傳感器要幾百美元,相差近百倍。所以使用者一定要量體裁衣,不宜盲目追求“高、精、尖”。
生產廠商往往是分段給出其濕度傳感器的精度的。如中、低溫段(0一80%RH)為±2%RH,而高濕段(80—100%RH)為±4%RH。而且此精度是在某一溫度下(如25℃)的值。如在不同溫度下使用濕度傳感器.其示值還要考慮溫度漂移的影響。*,相對濕度是溫度的函數,溫度嚴重地影響著空間內的相對濕度。溫度每變化0.1℃。將產生0.5%RH的濕度變化(誤差)。使用場合如果難以做到恒溫,則提出過高的測濕精度是不合適的。因為濕度隨著溫度的變化也漂忽不定的話,奢談測濕精度將失去實際意義。所以控濕首先要控好溫,這就是大量應用的往往是溫濕度—體化傳感器而不單純是濕度傳感器的緣故。
多數情況下,如果沒有的控溫手段,或者被測空間是非密封的,±5%RH的精度就足夠了。對于要求控制恒溫、恒濕的局部空間,或者需要隨時跟蹤記錄濕度變化的場合,再選用±3%RH
以上精度的濕度傳感器。與此相對應的溫度傳感器.其測溫精度須足±0.3℃以上,起碼是±0.5℃的。而精度高于±2%RH的要求恐怕連校準傳感器的標準濕度發生器也難以做到,更何況傳感器自身了。國家標準物質研究中心濕度室的文章認為:“相對濕度測量儀表,即使在20—25℃下,要達到2%RH的準確度仍是很困難的。”
3、考慮時漂和溫漂
幾乎所有的傳感器都存在時漂和溫漂。由于濕度傳感器必須和大氣中的水汽相接觸,所以不能密封。這就決定了它的穩定性和壽命是有限的。一般情況下,生產廠商會標明1次標定的有效使用時間為1年或2年,到期負責重新標定。請使用者在選擇傳感器時考慮好日后重新標定的渠道,不要貪圖便宜或迷信洋貨而忽略了售后服務問屬。
選擇濕度傳感器要考慮應用場合的溫度變化范圍,看所選傳感器在溫度下能否正常工作,溫漂是否超出設計指標。要提醒使用者注意的是:電容式濕度傳感器的溫度系數α是個變量,它隨使用溫度、濕度范圍而異。這是因為水和高分子聚合物的介電系數隨溫度的改變是不同步的,而溫度系數α又主要取決于水和感濕材料的介電系數,所以電容式濕敏元件的溫度系數并非常數。電容式濕度傳感器在常溫、中濕段的溫度系數zui小,5-25℃時,中低濕段的溫漂可忽略不計。但在高溫高濕區或負溫高濕區使用時,就一定要考慮溫漂的影響,進行必要的補償或訂正。
和測量重量、溫度一樣,選擇濕度傳感器首先要確定測量范圍。除了氣象、科研部門外,搞溫、濕度測控的一般不需要全濕程(0-100%RH)測量。在當今的信息時代,傳感器技術與計算機技術、自動控制拄術緊密結合著。測量的目的在于控制,測量范圍與控制范圍合稱使用范圍。當然,對不需要搞測控系統的應用者來說,直接選擇通用型濕度儀就可以了。下面列舉一些應用領域對濕度傳感器使用溫度、濕度的不同要求,供使用者參考。用戶根據需要向傳感器生產廠提出測量范圍,生產廠優先保證用戶在使用范圍內傳感器的性能穩定一致,求得合理的性能價格比,對雙方來講是一件相得益彰的事情。
2、選擇測量精度
和測量范圍一樣,測量精度同是傳感器zui重要的指標。每提高—個百分點.對傳感器來說就是上一個臺階,甚至是上一個檔次。因為要達到不同的精度,其制造成本相差很大,售價也相差甚遠。例如進口的1只廉價的濕度傳感器只有幾美元,而1只供標定用的全濕程濕度傳感器要幾百美元,相差近百倍。所以使用者一定要量體裁衣,不宜盲目追求“高、精、尖”。
生產廠商往往是分段給出其濕度傳感器的精度的。如中、低溫段(0一80%RH)為±2%RH,而高濕段(80—100%RH)為±4%RH。而且此精度是在某一溫度下(如25℃)的值。如在不同溫度下使用濕度傳感器.其示值還要考慮溫度漂移的影響。*,相對濕度是溫度的函數,溫度嚴重地影響著空間內的相對濕度。溫度每變化0.1℃。將產生0.5%RH的濕度變化(誤差)。使用場合如果難以做到恒溫,則提出過高的測濕精度是不合適的。因為濕度隨著溫度的變化也漂忽不定的話,奢談測濕精度將失去實際意義。所以控濕首先要控好溫,這就是大量應用的往往是溫濕度—體化傳感器而不單純是濕度傳感器的緣故。
多數情況下,如果沒有的控溫手段,或者被測空間是非密封的,±5%RH的精度就足夠了。對于要求控制恒溫、恒濕的局部空間,或者需要隨時跟蹤記錄濕度變化的場合,再選用±3%RH
以上精度的濕度傳感器。與此相對應的溫度傳感器.其測溫精度須足±0.3℃以上,起碼是±0.5℃的。而精度高于±2%RH的要求恐怕連校準傳感器的標準濕度發生器也難以做到,更何況傳感器自身了。國家標準物質研究中心濕度室的文章認為:“相對濕度測量儀表,即使在20—25℃下,要達到2%RH的準確度仍是很困難的。”
3、考慮時漂和溫漂
幾乎所有的傳感器都存在時漂和溫漂。由于濕度傳感器必須和大氣中的水汽相接觸,所以不能密封。這就決定了它的穩定性和壽命是有限的。一般情況下,生產廠商會標明1次標定的有效使用時間為1年或2年,到期負責重新標定。請使用者在選擇傳感器時考慮好日后重新標定的渠道,不要貪圖便宜或迷信洋貨而忽略了售后服務問屬。
選擇濕度傳感器要考慮應用場合的溫度變化范圍,看所選傳感器在溫度下能否正常工作,溫漂是否超出設計指標。要提醒使用者注意的是:電容式濕度傳感器的溫度系數α是個變量,它隨使用溫度、濕度范圍而異。這是因為水和高分子聚合物的介電系數隨溫度的改變是不同步的,而溫度系數α又主要取決于水和感濕材料的介電系數,所以電容式濕敏元件的溫度系數并非常數。電容式濕度傳感器在常溫、中濕段的溫度系數zui小,5-25℃時,中低濕段的溫漂可忽略不計。但在高溫高濕區或負溫高濕區使用時,就一定要考慮溫漂的影響,進行必要的補償或訂正。
隨著時代的發展,科研、農業、暖通、紡織、機房、航空航天、電力等工業部門,越來越需要采用濕度傳感器,對產品質量的要求越業越高,對環境溫、濕度的控制以及對工業材料水份值的監測與分析都已成為比較普遍的技術條件之一。濕度傳感器產品及濕度測量屬于90年代興起的行業。如何使用好濕度傳感器,如何判斷濕度傳感器的性能,這對一般用戶來講,仍是一件較為復雜的技術問題。
下列此文供大家參考。
一、濕度傳感器的分類及感濕特點
濕度傳感器,分為電阻式和電容式兩種,產品的基本形式都為在基片涂覆感濕材料形成感濕膜。空氣中的水蒸汽吸附于感濕材料后,元件的阻抗、介質常數發生很大的變化,從而制成濕敏元件。
國內外各廠家的濕度傳感器產品水平不一,質量價格都相差較大,用戶如何選擇性能價格比*的理想產品確有一定難度,需要在這方面作深入的了解。濕度傳感器具有如下特點:
1、精度和長期穩定性
濕度傳感器的精度應達到±2%~±5%RH,達不到這個水平很難作為計量器具使用,濕度傳感器要達到±2%~±3%RH的精度是比較困難的,通常產品資料中給出的特性是在常溫(20℃±10℃)和潔凈的氣體中測量的。在實際使用中,由于塵土、油污及有害氣體的影響,使用時間一長,會產生老化,精度下降,濕度傳感器的精度水平要結合其長期穩定性去判斷,一般說來,長期穩定性和使用壽命是影響濕度傳感器質量的頭等問題,年漂移量控制在1%RH水平的產品很少,一般都在±2%左右,甚至更高。
2、濕度傳感器的溫度系數
濕敏元件除對環境濕度敏感外,對溫度亦十分敏感,其溫度系數一般在0.2~0.8%RH/℃范圍內,而且有的濕敏元件在不同的相對濕度下,其溫度系數又有差別。溫漂非線性,這需要在電路上加溫度補償式。采用單片機軟件補償,或無溫度補償的濕度傳感器是保證不了全溫范圍的精度的,濕度傳感器溫漂曲線的線性化直接影響到補償的效果,非線性的溫漂往往補償不出較好的效果,只有采用硬件溫度跟隨性補償才會獲得真實的補償效果。濕度傳感器工作的溫度范圍也是重要參數。多數濕敏元件難以在40℃以上正常工作。
3、濕度傳感器的供電
金屬氧化物陶瓷,高分子聚合物和氯化鋰等濕敏材料施加直流電壓時,會導致性能變化,甚至失效,所以這類濕度傳感器不能用直流電壓或有直流成份的交流電壓。必須是交流電供電。
4、互換性
目前,濕度傳感器普遍存在著互換性差的現象,同一型號的傳感器不能互換,嚴重影響了使用效果,給維修、調試增加了困難,有些廠家在這方面作出了種種努力,(但互換性仍很差)取得了較好效果。
5、濕度校正
校正濕度要比校正溫度困難得多。溫度標定往往用一根標準溫度計作標準即可,而濕度的標定標準較難實現,干濕球溫度計和一些常見的指針式濕度計是不能用來作標定的,精度無法保證,因其要求環境條件非常嚴格,一般情況,(在濕度環境適合的條件下)在缺乏完善的檢定設備時,通常用簡單的飽和鹽溶液檢定法,并測量其溫度。
二、對濕度傳感器性能作初步判斷的幾種方法
在濕度傳感器實際標定困難的情況下,可以通過一些簡便的方法進行濕度傳感器性能判斷與檢查。
1、一致性判定,同一類型,同一廠家的濕度傳感器產品一次購買兩支以上,越多越說明問題,放在一起通電比較檢測輸出值,在相對穩定的條件下,觀察測試的一致性。若進一步檢測,可在24h內間隔一段時間記錄,一天內一般都有高、中、低3種濕度和溫度情況,可以較全面地觀察產品的一致性和穩定性,包括溫度補償特性。
2、用嘴呵氣或利用其它加濕手段對傳感器加濕,觀察其靈敏度、重復性、升濕脫濕性能,以及分辨率,產品的zui高量程等。
3、對產品作開盒和關盒兩種情況的測試。比較是否一致,觀察其熱效應情況。
4、對產品在高溫狀態和低溫狀態(根據說明書標準)進行測試,并恢復到正常狀態下檢測和實驗前的記錄作比較,考查產品的溫度適應性,并觀察產品的一致性情況。
產品的性能zui終要依據質檢部門正規完備的檢測手段。利用飽和鹽溶液作標定,也可使用產品作比對檢測,產品還應進行長期使用過程中的長期標定才能較全面地判斷濕度傳感器的質量。
三、對市場上濕度傳感器產品的幾點分析
國內市場上出現了不少國內外濕度傳感器產品,電容式濕敏元件較為多見,感濕材料種類主要為高分子聚合物,氯化鋰和金屬氧化物。
電容式濕敏元件的優點在于響應速度快、體積小、線性度好、較穩定,國外有些產品還具備高溫工作性能。但是達到上述性能的產品多為國外,價格都較昂貴。市場上出售的一些電容式濕敏元件低價產品,往往達不到上述水平,線性度、一致性和重復性都不甚理想,30%RH以下,80%RH以上感濕段變形嚴重。有些產品采用單片機補償修正,使濕度出現"階躍"性的跳躍,使精度降低,出現一致性差、線性差的缺點。無論次或低檔次的電容式濕敏元件,長期穩定性都不理想,多數長期使用漂移嚴重,濕敏電容容值變化為pF級,1%RH的變化不足0.5pF,容值的漂移改變往往引起幾十RH%的誤差,大多數電容式濕敏元件不具備40℃以上溫度下工作的性能,往往失效和損壞。
電容式濕敏元件抗腐蝕能力也較欠缺,往往對環境的潔凈度要求較高,有的產品還存在光照失效、靜電失效等現象,金屬氧化物為陶瓷濕敏電阻,具有濕敏電容相同的優點,但塵埃環境下,陶瓷細孔被封堵元件就會失效,往往采用通電除塵的方法來處理,但效果不夠理想,且在易燃易爆環境下不能使用,氧化鋁感濕材料無法克服其表面結構"天然老化"的弱點,阻抗不穩定,金屬氧物陶瓷濕敏電阻也同樣存在長期穩定性差的弱點。
氯化鋰濕敏電阻,具有zui突出的優點是長期穩定性*,因此通過嚴格的工藝制作,制成的儀表和傳感器產品可以達到較高的精度,穩定性強是產品具備良好的線性度、精密度及一致性,是長期使用壽命的可靠保證。氯化鋰濕敏元件的長期穩定性其它感濕材料尚無法取代。
下列此文供大家參考。
一、濕度傳感器的分類及感濕特點
濕度傳感器,分為電阻式和電容式兩種,產品的基本形式都為在基片涂覆感濕材料形成感濕膜。空氣中的水蒸汽吸附于感濕材料后,元件的阻抗、介質常數發生很大的變化,從而制成濕敏元件。
國內外各廠家的濕度傳感器產品水平不一,質量價格都相差較大,用戶如何選擇性能價格比*的理想產品確有一定難度,需要在這方面作深入的了解。濕度傳感器具有如下特點:
1、精度和長期穩定性
濕度傳感器的精度應達到±2%~±5%RH,達不到這個水平很難作為計量器具使用,濕度傳感器要達到±2%~±3%RH的精度是比較困難的,通常產品資料中給出的特性是在常溫(20℃±10℃)和潔凈的氣體中測量的。在實際使用中,由于塵土、油污及有害氣體的影響,使用時間一長,會產生老化,精度下降,濕度傳感器的精度水平要結合其長期穩定性去判斷,一般說來,長期穩定性和使用壽命是影響濕度傳感器質量的頭等問題,年漂移量控制在1%RH水平的產品很少,一般都在±2%左右,甚至更高。
2、濕度傳感器的溫度系數
濕敏元件除對環境濕度敏感外,對溫度亦十分敏感,其溫度系數一般在0.2~0.8%RH/℃范圍內,而且有的濕敏元件在不同的相對濕度下,其溫度系數又有差別。溫漂非線性,這需要在電路上加溫度補償式。采用單片機軟件補償,或無溫度補償的濕度傳感器是保證不了全溫范圍的精度的,濕度傳感器溫漂曲線的線性化直接影響到補償的效果,非線性的溫漂往往補償不出較好的效果,只有采用硬件溫度跟隨性補償才會獲得真實的補償效果。濕度傳感器工作的溫度范圍也是重要參數。多數濕敏元件難以在40℃以上正常工作。
3、濕度傳感器的供電
金屬氧化物陶瓷,高分子聚合物和氯化鋰等濕敏材料施加直流電壓時,會導致性能變化,甚至失效,所以這類濕度傳感器不能用直流電壓或有直流成份的交流電壓。必須是交流電供電。
4、互換性
目前,濕度傳感器普遍存在著互換性差的現象,同一型號的傳感器不能互換,嚴重影響了使用效果,給維修、調試增加了困難,有些廠家在這方面作出了種種努力,(但互換性仍很差)取得了較好效果。
5、濕度校正
校正濕度要比校正溫度困難得多。溫度標定往往用一根標準溫度計作標準即可,而濕度的標定標準較難實現,干濕球溫度計和一些常見的指針式濕度計是不能用來作標定的,精度無法保證,因其要求環境條件非常嚴格,一般情況,(在濕度環境適合的條件下)在缺乏完善的檢定設備時,通常用簡單的飽和鹽溶液檢定法,并測量其溫度。
二、對濕度傳感器性能作初步判斷的幾種方法
在濕度傳感器實際標定困難的情況下,可以通過一些簡便的方法進行濕度傳感器性能判斷與檢查。
1、一致性判定,同一類型,同一廠家的濕度傳感器產品一次購買兩支以上,越多越說明問題,放在一起通電比較檢測輸出值,在相對穩定的條件下,觀察測試的一致性。若進一步檢測,可在24h內間隔一段時間記錄,一天內一般都有高、中、低3種濕度和溫度情況,可以較全面地觀察產品的一致性和穩定性,包括溫度補償特性。
2、用嘴呵氣或利用其它加濕手段對傳感器加濕,觀察其靈敏度、重復性、升濕脫濕性能,以及分辨率,產品的zui高量程等。
3、對產品作開盒和關盒兩種情況的測試。比較是否一致,觀察其熱效應情況。
4、對產品在高溫狀態和低溫狀態(根據說明書標準)進行測試,并恢復到正常狀態下檢測和實驗前的記錄作比較,考查產品的溫度適應性,并觀察產品的一致性情況。
產品的性能zui終要依據質檢部門正規完備的檢測手段。利用飽和鹽溶液作標定,也可使用產品作比對檢測,產品還應進行長期使用過程中的長期標定才能較全面地判斷濕度傳感器的質量。
三、對市場上濕度傳感器產品的幾點分析
國內市場上出現了不少國內外濕度傳感器產品,電容式濕敏元件較為多見,感濕材料種類主要為高分子聚合物,氯化鋰和金屬氧化物。
電容式濕敏元件的優點在于響應速度快、體積小、線性度好、較穩定,國外有些產品還具備高溫工作性能。但是達到上述性能的產品多為國外,價格都較昂貴。市場上出售的一些電容式濕敏元件低價產品,往往達不到上述水平,線性度、一致性和重復性都不甚理想,30%RH以下,80%RH以上感濕段變形嚴重。有些產品采用單片機補償修正,使濕度出現"階躍"性的跳躍,使精度降低,出現一致性差、線性差的缺點。無論次或低檔次的電容式濕敏元件,長期穩定性都不理想,多數長期使用漂移嚴重,濕敏電容容值變化為pF級,1%RH的變化不足0.5pF,容值的漂移改變往往引起幾十RH%的誤差,大多數電容式濕敏元件不具備40℃以上溫度下工作的性能,往往失效和損壞。
電容式濕敏元件抗腐蝕能力也較欠缺,往往對環境的潔凈度要求較高,有的產品還存在光照失效、靜電失效等現象,金屬氧化物為陶瓷濕敏電阻,具有濕敏電容相同的優點,但塵埃環境下,陶瓷細孔被封堵元件就會失效,往往采用通電除塵的方法來處理,但效果不夠理想,且在易燃易爆環境下不能使用,氧化鋁感濕材料無法克服其表面結構"天然老化"的弱點,阻抗不穩定,金屬氧物陶瓷濕敏電阻也同樣存在長期穩定性差的弱點。
氯化鋰濕敏電阻,具有zui突出的優點是長期穩定性*,因此通過嚴格的工藝制作,制成的儀表和傳感器產品可以達到較高的精度,穩定性強是產品具備良好的線性度、精密度及一致性,是長期使用壽命的可靠保證。氯化鋰濕敏元件的長期穩定性其它感濕材料尚無法取代。